[Episode #33] – Fracking Follies

Full Episode

The US Energy Information Administration (EIA) regularly updates its estimates for how much oil and gas might be recovered in the future, and at what rate. With the application of new technology from year to year, those estimates generally keep going up. But it’s important to remember that they are just estimates — and the devil is always in the details.

Our guest in this episode is a career geoscientist who has diligently delved into those devilish details. In his new reports, he finds that EIA’s Annual Energy Outlook 2016 seems to significantly overstate how much oil and gas might be recovered using fracking technology, with estimates for shale gas and tight oil production that exceed the estimates for how much of those resources are even technically recoverable. In this extended and technically detailed interview, we discuss EIA’s most recent forecasts and try to understand what’s realistic for future US hydrocarbon production.

Geek rating: 9

(more…)

Guest:

David Hughes is an earth scientist who has studied the energy resources of Canada for four decades, including 32 years with the Geological Survey of Canada as a scientist and research manager. He developed the National Coal Inventory to determine the availability and environmental constraints associated with Canada’s coal resources. As Team Leader for Unconventional Gas on the Canadian Gas Potential Committee, he coordinated the publication of a comprehensive assessment of Canada’s unconventional natural gas potential.

Over the past decade, Hughes has researched, published and lectured widely on global energy and sustainability issues in North America and internationally. Hughes is president of Global Sustainability Research, a consultancy dedicated to research on energy and sustainability issues. He is also a board member of Physicians, Scientists & Engineers for Healthy Energy (PSE Healthy Energy) and is a Fellow of Post Carbon Institute. Hughes contributed to Carbon Shift, an anthology edited by Thomas Homer-Dixon on the twin issues of peak energy and climate change, and his work has been featured in Nature, Canadian Business, Bloomberg, USA Today, as well as other popular press, radio, and television.

On the Web: David Hughes’ page at Post Carbon Institute

(more…)

[Episode #32] – Resources and Economy

Full Episode

The notion of “decoupling” energy consumption from economic growth has become vogue in policy circles, but how much evidence is there that it’s really happening? If the energy intensity of our economy is falling, are we sure that it’s becoming more efficient, or might we just be offshoring energy-intensive industries to somewhere else…along with those emissions? If energy reaches a certain percentage of total spending, does it tip an economy into recession? Is there a necessary relationship between energy consumption and monetary policy? Is there a point at which the simple fact that we live on a finite planet must limit economic growth, or can economic growth continue well beyond our resource consumption? Can the declining EROI of fossil fuels tell us anything about the future of the economy? And can we have economic growth using clean, low-carbon fuels, or might transitioning to an economy that produces zero net new carbon emissions put the economy into recession and debt?

To help us answer these thorny questions, we turn to an expert researcher who has looked at the relationship between energy consumption and the economy over long periods of time and multiple economies, and found some startling results with implications for the Federal Reserve, for economic policymakers, and for all those who are involved in energy transition.

Geek rating: 8

(more…)

Guest:

Dr. Carey King performs interdisciplinary research related to how energy systems interact within the economy and environment. He is a Research Scientist at The University of Texas at Austin, and Assistant Director at the Energy Institute. He also has appointments with the Center for International Energy and Environmental Policy within the Jackson School of Geosciences and the McCombs School of Business. He has both a B.S. with high honors and Ph.D. in Mechanical Engineering from the University of Texas at Austin. He has published technical articles in the academic journals Environmental Science and Technology, Environmental Research Letters, Nature Geoscience, Energy Policy, Sustainability, and Ecology and Society. He has also written commentary for American Scientist and Earth magazines discussing energy, water, food, and economic interactions. Dr. King has several patents as former Director for Scientific Research of Uni-Pixel Displays, Inc.

On Twitter: @CareyWKing

On the Web:  Carey King’s website

(more…)

[Episode #31] – Transition in Ireland

Full Episode

Ireland is one of the most advanced countries in energy transition, getting over a quarter of its electricity from renewables. It also has one of the most ambitious targets—to obtain 40% of its electricity generation from renewables by 2020—and the resources to be more than 100% powered by renewables, given time and technological development. On the flip side, it also has a severe dependence on imported fossil fuels, and relies on some of the dirtiest power plants in the world.

In this episode, we explore this curious mix of reality, ambition, and potential with the leader of Ireland’s Green Party, a bona fide energy wonk and a longtime supporter of energy transition. From Ireland’s domestic renewable resources to the tantalizing possibility of the North Seas Offshore Grid initiative, it’s all here.

Geek rating: 4

(more…)

Guest:

 Eamon Ryan is the leader of Ireland’s Green Party; the former Minister for Communications, Energy and Natural Resources; and is currently a member of the Communications, Climate and Energy committee in the Irish Parliament. He also currently works for E3G, a European climate organization, and chairs the digital policy group in the Institute of International and European Affairs.

On Twitter: @eamonryan

On the Web: Eamon Ryan’s website

(more…)

[Episode #30] – The Future of Wind

Full Episode

The cost of wind power has been falling steadily again since the 2008 price spike, and newer projects have been coming in at 2 cents per kilowatt-hour, making them very competitive with natural gas fired power and ranking among the very lowest-cost ways to generate electricity. But can wind prices keep falling, or have they bottomed out?

A recent report from the Lawrence Berkeley National Lab, the National Renewable Energy Lab, and other organizations offers some clues. Based on a survey of 163 of the world’s foremost wind energy experts, it examines in detail what factors have led to wind’s cost reductions in the past, and attempts to forecast what will drive further cost reductions in the future. It also looks at some of the reasons why previous forecasts have underestimated the growth and cost reductions of wind, and suggests that many agency forecasts may be underestimating them still. In this episode, one of the report’s principal authors explains the findings and offers some cautionary words about how much confidence we can have in our forecasts.

Geek rating: 4

(more…)

Guest:

Dr. Ryan Wiser is a Senior Scientist and Group Leader in the Electricity Markets and Policy Group at Lawrence Berkeley National Laboratory. Ryan leads and conducts research and analysis on renewable energy, including on the planning, design, and evaluation of renewable energy policies; on the costs, benefits, and market potential of renewable electricity sources; on electric grid operations and infrastructure impacts; and on public acceptance and deployment barriers. Ryan holds a B.S. in Civil Engineering from Stanford University and an M.S. and Ph.D. in Energy and Resources from the University of California, Berkeley.

On Twitter: @BerkeleyLabEMP

On the Web: Ryan Wiser page at LBNL

(more…)

[Episode #29] – Grid Simulation and Wind Potential

Full Episode

What combination of power generators on the U.S. grid produces reliable power at the lowest cost? Or, what’s the most renewable energy that can be deployed at a given grid power cost, and what kind of transmission capacity is needed to support it? How would the U.S. grid be different if it were one, unified grid with more high-voltage direct current (HVDC) transmission capacity? What’s the most productive design for a wind farm? How might weather and a changing climate affect future electricity production from wind and solar farms? And how much renewable power is really feasible on the U.S. grid?

These have been devilishly difficult questions to answer, but now advanced mathematical simulations are beginning to make it possible to answer them much more quickly…and if quantum computing becomes a reality, we could answer them instantly.

In an homage to Comedy Central’s Drunk History, this episode features a conversation conducted over several pints of IPA with a mathematician who recently developed such a simulator while he was working at NOAA (the National Oceanic and Atmospheric Administration) in Boulder, CO. His insights on how the grid of the future might actually function are fascinating, and will likely shatter some of your pre-existing beliefs. It also contains a few nuggets for the serious math geeks out there.

Geek rating: 8

(more…)

Guest:

Dr. Christopher Clack is the founder of Vibrant Clean Energy, LLC, a software and services company that focuses on optimization techniques and renewable energy integration into the electricity grid. Dr. Clack was previously a research scientist for the Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder working with the Earth System Research Laboratory (ESRL) NOAA for half a decade, leading the development of the NEWS simulator. Dr. Clack received his first class BSc (Hons) in mathematics and statistics for the University of Manchester in the UK. He then went on to research applied mathematics and plasma physics at the University of Sheffield in the UK. During his PhD, Dr. Clack completed an area of study centered on nonlinear resonance theory within the framework of magnetohydrodynamics (MHD) that remained unsolved for twenty years. The theories derived have helped our understanding of the Sun as well as possibilities for fusion reactors, such as ITER.

On Twitter: @clacky007

On the Web: Vibrant Clean Energy

(more…)

[Episode #28] – Transition in Cities

Full Episode

It is widely assumed that the ongoing migration of rural peoples to mega-cities all over the world will help reduce humanity’s per-capita energy footprint, while giving people a higher standard of living and accelerating energy transition. But the world is full of old, inefficient cities in desperate need of an eco-makeover, and of experts who understand the principles of “smart urbanization” and who can help identify how to transform a city from brown and dumb to smart and green. What’s the potential for replacing concrete with living things in cities? How can autonomous and electric vehicles help make cities cleaner and more livable? Why isn’t China promoting its phenomenal success with e-bikes to the rest of the world? Is China’s commodity demand going to continue to weaken as it moves away from a manufacturing economy? And will the emissions it was generating just move elsewhere when it does? All these questions and more are answered in this wide-ranging conversation with an expert on smart urbanization and China.

Geek rating: 3

(more…)

Guest:

CC Huang works to advance sustainable development in the United States and China. She is currently working with Equilibrium Capital to accelerate investment in sustainable technologies and the Energy Foundation China on urban development strategy. She led the creation of the Green and Smart Urban Development Guidelines, which are now being used to train government officials and guide large-scale urban development projects in China, inform urban planning in Mexico City, and to promote sustainability principles in Sweden. She has written for or been featured in Science, Forbes, Fortune China, Next City, and Caijing, among others. She has also worked at Energy Innovation, Lawrence Berkeley National Laboratory, and the Natural Resources Defense Council. She obtained her MPA from Princeton University and completed her BA at George Washington University.

On Twitter: @cc_huang

On the Web: http://energyinnovation.org/greensmart/

(more…)

[Episode #27] – Better Grid Modeling

Full Episode

Although it’s clear enough that energy transition is necessary and reasonable, and although we know that transition is mainly happening on the grid at first, there is still much uncertainty about exactly where on the grid different strategies can be tried, how much they can accomplish, and what they’ll cost, relative to the alternatives….not to mention how the rest of the grid will respond as different measures—like storage, demand response, rooftop solar, controlled dispatch, and so on—are implemented. What’s needed to answer all these difficult questions? Better models, including serious math, by serious researchers.

Fortunately, one of those researchers is willing and able to explain several years of her work in grid modeling at NREL and elsewhere. So tune in and put on your thinking caps, because this episode (Geek Rating 10!) is not for the faint of heart.

Geek rating: 10

(more…)

Guest:

Marissa Hummon is a senior energy scientist with Tendril, a provider of customer-facing software to the energy industry, based in Boulder, Colorado. Previously, she spent five years at the National Renewable Energy Laboratory in the Energy Analysis group. She earned her BA in Physics from Colorado College and her PhD in Applied Physics from Harvard University. Marissa started her career in grid integration of renewables by looking at some of the core problems with modeling the intermittency and variability of renewable technologies. Before joining Tendril she worked on quantifying the value of demand response and storage technologies in wholesale electricity markets. At Tendril she is leading the development of a residential demand response product that balances the home owner’s comfort and the utilities’ production costs.

On Twitter: @Tendril

On the Web: LinkedIn Profile for Marissa Hummon

(more…)

[Episode #26] – Geoengineering

Full Episode

As the world continues to struggle with the effects of climate change, energy transition is more important than ever as a key pathway to stopping global warming. But will it be enough? Many serious climate researchers think it won’t be, and urge deliberate attempts to directly alter the Earth’s climate by using a number of technologies, loosely grouped under the heading of geoengineering. But geoengineering has not won much support from the climate and environmental communities, and still struggles to gain enough legitimacy to attract sufficient research funding to attempt serious pilot projects that might tell us whether geoengineering holds real promise as a safe, cost-effective, and powerful tool in a portfolio of climate change mitigation strategies.

So what is the real potential of geoengineering to address climate change? How much would it cost? How risky is it, and what justification might there be for taking that risk? And what sorts of attitudinal shifts might be needed within the climate and environmental communities to embrace geoengineering as one of a portfolio of strategies? We attempt to answer all of those questions and more in this interview with a veteran science journalist and author of a recent book on geoengineering.

Geek rating: 5

(more…)

Guest:

 Oliver Morton is a senior editor for Essays and Briefings at The Economist. He was previously the Chief News and Features Editor at Nature and editor of Wired UK. He is the author of The Planet Remade: How Geoengineering Could Change The World (2015), Mapping Mars: Science, Imagination and the Birth of a World (2002), which was shortlisted for the Guardian First Book Award; and Eating the Sun: How Plants Power the Planet (2007). His work has been published in New Yorker, National Geographic, Discover, Time, American Scholar, New Scientist, New York Times, Financial Times, Guardian and Wall Street Journal. He has a degree in the history and philosophy of science from Cambridge University and lives with his wife in Greenwich, England. Asteroid 10716 Olivermorton is named in his honour.

On the Web: Oliver Morton’s blog, Heliophage

(more…)

[Episode #25] – The Energy-Water Nexus

Full Episode

Energy and water are inextricably linked: It takes energy to supply water, and it takes water to supply energy. And those processes consume vast amounts of both. Yet we have only really begun to study the energy-water nexus and gather the data that policymakers will need to understand the risk that climate change poses to both power and water. As rainfall and temperatures continue to depart from historical norms, forcing conventional power plants to throttle back or shut down, we may need to invest more heavily in wind and solar PV just to keep the lights on. Even more radical solutions may become necessary, like switching to more dry-cooled power plants, and desalinating brackish groundwater. Ideally, we would treat the challenges of the energy-water nexus in an integrated way, deliberately reducing our energy and water demands simultaneously as part of our energy transition strategies, but our governments aren’t typically set up for that, and much more basic research and analytical work is needed.

Geek rating: 6

(more…)

Guest:

Jordan Macknick is an Energy and Environmental Analyst at the National Renewable Energy Laboratory (NREL). Jordan leads NREL analysis research on the interface of energy, water, and land issues in policy planning.  In addition, his research addresses energy deployment in developing countries, technology characterizations, and global energy and carbon systems. Prior to joining NREL in 2009, he worked as a research associate at the International Institute of Applied Systems Analysis (IIASA) in Austria. He holds a BA in mathematics and environmental studies from Hamline University and a Master’s of Environmental Science from the Yale School of Forestry and Environmental Studies.

On the Web: NREL: The Energy-Water Nexus

(more…)

[Episode #24] – Starting Over

Full Episode

What if we didn’t have to work around the grid we have today, with all of its inertia and incumbents and inflexibility? If we could start over and design the grid from scratch, what would it look like? And once we understood that, how might it change the way we are going about energy transition now, in order to reach that goal more quickly and directly? If what we really want is a grid that is fair, equitable, reliable, efficient, resilient, sustainable, and which serves our climate and social goals, what are the first principles we might work from, and what mechanisms might get us where we want to go? This freewheeling conversation aims to help all of us “think outside the box” a bit more, and imagine what the possibilities might be if we could just start over.

Geek rating: 9

(more…)

Guest:

Jim Kennerly is a Principal Analyst with Sustainable Energy Advantage in Massachusetts, a consulting firm specializing in renewable energy markets and policy, where he focuses on solar and distributed energy markets and policy. Formerly, he was a Senior Policy Analyst at the North Carolina Clean Energy Technology Center at NC State University, where he researched distributed energy economics, utility regulation and rate design with funding from the U.S. Department of Energy SunShot Initiative, and also worked on the Database of State Incentives for Renewables and Efficiency (DSIRE) project. Jim also served as a regulatory analyst to the North Carolina Sustainable Energy Association and a consultant to the U.S. EPA’s ENERGY STAR program at ICF International.

On Twitter: @kennerlyJ1

On the Web: Jim Kennerly’s LinkedIn profile

(more…)